for intelligent and conventional 2-wire transmitters, in housing S17 for rail and wall mounting

Application

The power supply unit SINEAX B 811 (Figure 1 and 2) provides the DC power supply for 2-wire transmitters and transfers the measured variable unchanged to the electrically insulated output.

Conversion to a different signal range such as $0 . . .5 \mathrm{~mA}$ or $1 \ldots 5 \mathrm{~V}$ (signal converter) is also possible.

Some versions of the SINEAX B 811 are designed for FSK ${ }^{1}$ communication. They are used in conjunction with "intelligent" 2-wire transmitters which are capable of dialogue and operation according to the FSK principle and the HART or user-specific protocol.
The series also includes "intrinsically safe" versions [EEx ia] IIC with an intrinsically safe measurement/supply circuit. These operate in conjunction with intrinsically safe 2-wire transmitters located in explosion hazard areas.

Provision is made for monitoring the measurement/supply circuit to detect short and open-circuits. Either of these faults is signalled by the fault signalling relay AF and the red LED. The output signals A1 and A12 can be set on the DIP switches to have a linear increasing or decreasing response.

The instrument fulfils all the important requirements and regulations concerning electromagnetic compatibility EMC and Safety (IEC 1010 resp. EN 61 010). It was developed and is manufactured and tested in strict accordance with the quality assurance standard ISO 9001.

Production QA is also certified according to guideline 94/9/EG.

Features / Benefits

- Designed for FSK communication, hand-held terminal connected to separate terminals. This facilitates operation in conjunction with an "intelligent" 2-wire transmitter designed for FSK and with a HART or user-specific protocol
- Electrically insulated between input circuit, output and power supply / Fulfils IEC 1010 resp. EN 61010 part 2
- AC/DC power supply / Universal
- "Intrinsically safe" version [EEx ia] IIC available (see "Table 6: Explosion protection data")
- Measurement/supply circuit monitored for open and short-circuits / Faults signalled by red LED, signalling relay and/or device failure signal
- Output can be switched between 0... 20 mA and $4 \ldots 20 \mathrm{~mA} /$ Universal matching to suit downstream device
- Green LED signals a power supply failure
- Compact and narrow

$\mathcal{E}_{0102}\left\langle\varepsilon_{x}\right\rangle$ II (1) G

Fig. 1. SINEAX B 811 in housing $\mathbf{S 1 7}$ clipped onto a top-hat rail.

Fig. 2. SINEAX B 811 in housing S17, screw hole mounting brackets pulled out.

[^0]
SINEAX B 811
 Power pack with additional functions

Technical Data

Input circuit (MSK)
Signal range I_{E} :
4... 20 mA DC

Supply voltage $U_{S}\left(\right.$ at $\left.I_{E}=20 \mathrm{~mA}\right)$:

$24 \mathrm{~V} \pm 7 \%$	with standard (non-Ex) version, not designed for communications protocol
$24 \mathrm{~V} \pm 7 \%$	with standard (non-Ex) version, designed for FSK communication
$>16.9 \mathrm{~V}$	with Ex versions, not designed for communications protocol
$>16.4 \mathrm{~V}$	with Ex versions, designed for FSK communication

Current limiter:

Max. line resistance:

Electronic At $I_{E}>30 \mathrm{~mA}, \mathrm{U}_{\mathrm{S}}$ is switched to 0 V for approx. 1 s .
U_{S} is then automatically readjusted to its set-point.

The maximum line resistance $\mathrm{R}_{\text {line }}$ permissible between the 2-wire transmitter and the supply unit depends on the voltage difference $U_{S}-U_{M}$:
$R_{\text {line }} \max .=\frac{U_{S}-U_{M}}{20 m A}$
$U_{S}=$ Supply voltage for
2-wire transmitter
$U_{M}=$ Min. operating voltage of the 2-wire transmitter

Measuring output \bigcirc

Output signals A1 and A12
(see section "Electrical connections")
The output signals A 1 and A 12 can be load-independent DC voltages U_{A} or currents I_{A}.

A1 and A12 are not electrically insulated; the same value is available at both outputs.

DC voltage signals $\mathbf{U}_{\mathbf{A}}$

Standard ranges for U_{A} :
$0 . . .5,1 \ldots 5,0 \ldots 10$ or $2 \ldots 10 \mathrm{~V}$
Non-standard ranges:
$0 . . .>5$ to $0 \ldots 15 \mathrm{~V}$
resp. live-zero
$>(1 \ldots 5)$ to $3 \ldots 15 \mathrm{~V}$
Short-circuit current:
$\leq 40 \mathrm{~mA}$
Load capacity $U_{A 1} / \cup_{A 12}$: 20 mA
Load impedance $U_{A 1} / \cup_{A 12}$:
$R_{\text {ext } A 1} / / R_{\text {ext A } 12}[k \Omega] \geq \frac{U_{A}[\mathrm{M}]}{20 \mathrm{~mA}}$
Residual ripple: < 1\% p.p., DC ... 10 kHz

DC current signals I_{A}

Standard ranges for I_{A} :

Non-standard ranges:

Open-circuit voltage:
Burden voltage $I_{A 1}$:
$0 . . .20 \mathrm{~mA}$ or $4 . . .20 \mathrm{~mA}$ selected by jumpers
$0 . . .1$ to $0 \ldots<20 \mathrm{~mA}$ resp. live zero
$0.2 \ldots 1$ to $<(4 \ldots 20) \mathrm{mA}$
Approx. $-7 \ldots+22 \mathrm{~V}$
15 V without communication $10 \mathrm{~V}(15 \mathrm{~V})$ with communication*
*When a hand-held terminal is connected to the field output A12, the voltage across the burden at output A 1 reduces to 10 V . Digital communication requires a minimum burden at output A 1 of 250Ω. A 250Ω resistor is therefore connected across the output circuit. If the load of the burden across output A1 already exceeds 250Ω, the resistor can be disconnected by changing the position of a jumper. The full burden voltage of 15 V is then available at output A1 instead of 10 V .

External resistance $I_{A 1}$:
$R_{\text {ext }} \max .[k \Omega]=\frac{15 \mathrm{~V}(10 \mathrm{~V})}{\mathrm{I}_{\mathrm{AN}}[\mathrm{mA}]}$
$I_{\mathrm{AN}}=$ Output circuit full-scale value
Burden voltage $I_{\mathrm{A} 12}$:
$<0.3 \mathrm{~V}$ (field indicator)
External resistance $I_{A 12}$:
$R_{\text {ext }} \max .[k \Omega]=\frac{0.3 \mathrm{~V}}{\mathrm{I}_{\text {AN }}[\mathrm{mA}]}$
Residual ripple:
< 1% p.p., DC ... 10 kHz
Response time (IEC 770):
Approx. 200 ms
Output characteristic:
Linear

Power supply $\mathbf{H} \rightarrow \bigcirc$

AC/DC power pack (DC and $45 . . .400 \mathrm{~Hz}$)
Table 1: Nominal voltages and tolerances

Nominal voltage U_{N}	Tolerance	Instrument version
$\begin{aligned} & 24 \ldots . \ldots 6 \mathrm{~V} \\ & \mathrm{DC} / \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { DC }-15 \ldots+33 \% \\ & \text { AC } \pm 15 \% \end{aligned}$	Standard (non-Ex)
$\begin{aligned} & 85 \ldots . .230 V^{1} \\ & D C / A C \end{aligned}$		
$\begin{aligned} & 24 \ldots 60 \mathrm{~V} \\ & \mathrm{DC} / \mathrm{AC} \end{aligned}$	$\begin{aligned} & D C-15 \ldots+33 \% \\ & A C \pm 15 \% \end{aligned}$	Type of protection "Intrinsically safe" [EEx ia] IIC
$\begin{aligned} & 85 \ldots 230 \mathrm{~V} \\ & \text { AC } \end{aligned}$	$\pm 10 \%$	
$\begin{aligned} & 85 \ldots . .110 \mathrm{~V} \\ & \mathrm{DC} \end{aligned}$	-15...+ 10\%	

[^1]Power input:
Approx. 2.5 W resp. $\leq 4.5 \mathrm{VA}$

Communication

Bi-directional communication of digital signals with an "intelligent" 2-wire transmitter designed for FSK and a HART or company-specific protocol.

Frequency range:

$$
500 \mathrm{~Hz} \ldots 35 \mathrm{kHz}
$$

Input circuit monitor 포
Pick-up level:
Signalling modes
Output signals
A1 and A12:

Frontplate signals:
Output contact AF: 1 relay, 1 potentially-free changeover contact (see Table 2)

Table 2: Type of output contact

Symbol	Material	Contact rating
	Gold flashed silver alloy	AC: $\leq 2 \mathrm{~A} / 250 \mathrm{~V}$ $(500 \mathrm{VA})$
DC: $\leq 1 \mathrm{~A} / 0.1 \ldots 250 \mathrm{~V}$		
$(30 \mathrm{~W})$		

Relay approved by UL, CSA, TÜV, SEV
Direction of action: Adjustable by switch

- Relay "energized" or "de-energized" in the case of a failure

Accuracy data (acc. to DIN/EC 770)

Basic accuracy:

Reference conditions:

Ambient temperature
Power supply
Output burden

Influencing factors:

Temperature
Burden influence

Long-time drift
Switch-on drift
Common and transverse mode influence
Output + or connected to ground:

Regulations

Electromagnetic compatibility:

Intrinsically safe:
Electrical standards:
Protection (acc. to IEC 529
resp. EN 60 529):

Operating voltages:
Contamination level:
Overvoltage category
acc. to IEC 664:

Double insulation:

Test voltage:

Environmental conditions

Climatic rating:
Climate class $3 Z$ acc. to VDINDE 3540

Commissioning temperature: -10 to $+55^{\circ} \mathrm{C}$
Operating temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}, \mathbf{E x}-20$ to $+55^{\circ} \mathrm{C}$

SINEAX B 811

Power pack with additional functions

Storage temperature:	-40 to $+70^{\circ} \mathrm{C}$	Mounting:	For snapping onto top-hat rail $(35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$) acc. to
Annual mean relative humidity:	$\leq 75 \%$ standard climatic rating		EN 50022
	$\leq 95 \%$ enhanced climatic rating		or
Vibration (IEC 68 T2/6):	$2 \mathrm{~g} / 5 . .150 \ldots 5 \mathrm{~Hz}$		directly onto a wall or panel using the pull-out screw hole brackets
	1 Octave/min., 2 h	Position of use:	Any
Shock (IEC 68 T2/27):	$30 \mathrm{~g} / 11 \mathrm{~ms}$	Terminals:	DIN/VDE 0609
			Screw terminals with wire guards, for light PVC wiring and
Installation data			max. $2 \times 0.75 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$
Housing:	Housing S17	Weight:	Approx. 0.2 kg
	See section "Dimensional drawings" for dimensions		
Material of housing:	Lexan 940 (polycarbonate), flammability class V-0 acc. to UL 94, self-extinguishing, non-dripping, free of halogen		

Standard versions

When ordering, it is only necessary to quote the Order No.:
Table 3: Instruments in standard-(non-Ex) version, (input circuit non intrinsically safe)

Version		Order Code	Order No.
Supply voltage:	$24 \mathrm{~V} \mathrm{DC}, \pm 7 \%$ at 20 mA		
Power supply:	$85 \ldots 230 \mathrm{~V} \mathrm{DC} \mathrm{/} \mathrm{AC}$		
FSK (field communications protocol):	Not designed for communications protocol Input circuit fault detection:	Open-circuit $<3.6 \mathrm{~mA}$, short-circuit $>21 \mathrm{~mA}$ Response to an input circuit:	Output signal linear response
Response of the output contact	Without output contact		
for a measurement/supply circuit fault:	Standard climatic rating		
Climatic rating:	$0 \ldots 20 \mathrm{~mA}, \mathrm{R}_{\text {ext }} \leq 750 \Omega$	$811-12 \mathrm{AO} 0000$	$\mathbf{1 2 6 8 5 6}$
Outputs A1 and A12*:	$4 \ldots 20 \mathrm{~mA}, \mathrm{R}_{\text {ext }} \leq 750 \Omega$	$811-12 \mathrm{BO} 0000$	$\mathbf{1 2 6 8 6 4}$
Outputs A1 and A12*:			

The complete order code 811-1... according to "Table 5: Specification and ordering information" should be stated for other versions.

[^2]Table 4: Instrument in version [EEx ia] IIC, (input circuit intrinsically safe)

Version		Order Code	Order No.
Supply voltage:	$\geq 16.9 \mathrm{VDC}$ at 20 mA		
Power supply:	$85 \ldots 110 \mathrm{~V} \mathrm{DC} \mathrm{/} 230 \mathrm{~V} \mathrm{AC}$		
Outputs A1 and A12*:	$4 \ldots 20 \mathrm{~mA}, \mathrm{R}_{\text {ext }} \leq 750 \Omega$		
FSK (field communications protocol):	Not designed for communications protocol		
Input circuit fault detection:	Open-circuit $<3,6 \mathrm{~mA}$, short-circuit $>21 \mathrm{~mA}$	$811-14 \mathrm{BO} 0000$	107400
Response to an input circuit:	Output signal linear response		
Response of the output contact AF	Without relay, without output contact		
for a measurement/supply circuit fault:	Standard climatic rating		
Climatic rating:			

The complete order code $811-1 \ldots \ldots$.... according to "Table 5: Specification and ordering information" should be stated for other versions.

* 2nd output signal A12 for field indicator only

Table 5: Specification and ordering information (see also Tables 3 and 4 «Standard versions»)

* A12 - according to instrument version - for connection with a field indicator or hand-held terminal only
** External resistance dependent on the position of jumper J 204 / J 205, see section technical data "Measuring output"
Continuation of Table 5 see on next page!

SINEAX B 811
 Power pack with additional functions

Continuation of Table 5: «Specification and ordering information»

* Lines with letter(s) under "no-go" cannot be combined with preceding lines having the same letter under "SCODE".

Table 6: Explosion protection data $\langle x\rangle$ II (1) G

Order code	Type of protection	Measuring circuit input			Output, power supply relays contacts	Certificates	Mounting location
811-13/14...	[EEx ia] IIC	$\begin{aligned} & \mathrm{U}_{0}=21 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{o}}=75 \mathrm{~mA} \\ & \mathrm{P}_{\mathrm{o}}=660 \mathrm{~mW} \end{aligned}$ Trapezium characteristic			$\begin{aligned} & \mathrm{U}_{\mathrm{m}}= 253 \mathrm{~V} \mathrm{AC} \\ & \text { resp. } \\ & 125 \mathrm{~V} \text { DC } \end{aligned}$	Type examination certificate PTB 97 ATEX 2083	Outside the hazardous area
		Lo	6.7 mH	25 mH $1.26 \mu \mathrm{~F}$			

Electrical connections

SINEAX B 811
 Power pack with additional functions

Configuration

1. Switching output signals A1 and A12 between the signal ranges $0 . . .20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$
The range of the outputs can be switched from $0 . . .20 \mathrm{~mA}$ to $4 . . .20 \mathrm{~mA}$ or vice versa depending on the positions of jumpers J 202 and J 203 (Fig. 3).

Output signals	Position of jumpers	
A1 / A12	J 202	J 203
$4 \ldots 20 \mathrm{~mA}$	1	1
$0 \ldots 20 \mathrm{~mA}$	3	3

2. Communication connector

Connect the communication connector to output A1 or A12 (Figures 6 to 9). Signals are then transferred in both directions between the hand-held terminal and the transmitter via the SINEAX B 811.
When using the field output A12, the 250Ω burden connected across output A12 in the power supply unit can be switched in and out of circuit with the aid of jumpers J 204 and J 205 (Fig. 3).

Communication connected to:	Position of jumpers	
	J 204	J 205
Field output A12* Integrated 250Ω resistor in circuit: The burden at measuring output A1 is reduced 250Ω Choice of A1 output signal range 0/4 ... 20 mA Voltage across A1 burden: $\mathbf{1 0} \mathrm{V}$	1	1
Field output A12* Integrated 250Ω resistor not in circuit: The burden at measuring output A1 is not reduced. A1 output signal range 4 ... 20 mA only Voltage across A1 burden: 15 V	1	3
Measuring output A1 Output signal range $4 \ldots 20 \mathrm{~mA}$ Voltage across A1 burden: 15 V	3	3

*See "Measuring output" in the "Technical data" section.
3. Response of the output signals A1 and A12 for a fault in the measurement/supply circuit
The response of the output signals A1 and A12 can be set with the aid of switches 1 and 2 on the DIP switch S 201 (Fig. 3).

Response of output signals	Dip switch S 201	
open-circuit of the measurement/supply circuit	Switch 1	Switch 2
Linear output signal	ON	OFF
Increasing output signal	OFF	OFF
Decreasing output signal (only with live zero signal)	OFF	ON

Fault	Output linear behaviour	Output driving upscale	Output driving downscale
Break	0 mA (with output 4... 20 mA) $-5 \mathrm{~mA}$ (with output 0... 20 mA)	Approx. 115\% of full scale end value $\text { e.g. } 23 \text { mA }$	$\begin{aligned} & \text { (with } \\ & \text { live-zero } \\ & \text { only) } \\ & \text { Approx. 10\% } \\ & \text { of full scale } \\ & \text { end value } \end{aligned}$
Shortcircuit	Approx. 26 mA with output $0 / 4 \ldots 20 \mathrm{~mA}$	with output 0/4... 20 mA or 11.5 V with output $0 / 2 \ldots 10 \mathrm{~V}$	e.g. 2 mA with output 4... 20 mA or 1 V with output 2... 10 V

4. Response of the output contact AF for a fault in the measurement/supply circuit
The response of the fault signalling relay can be set with the aid of switches 3 and 4 on the DIP switch S 201 (Fig. 3).

Operating sense of the fault signalling relay AF in the event of a fault	DIP switch S 201	
Switch 3	Switch 4	
Relay energised	ON	OFF
Relays de-energised	OFF	ON

Fig. 3. Positions of the DIP switches S 201 and jumpers J 202 to J 205.

Table 7: Terminal allocation

[^3]
SINEAX B 811

Power pack with additional functions

Fig. 8. SINEAX Type 811-1..2,
Non-Ex input and output circuits,
supply voltage $U_{S} 24$ V DC,
designed for FSK.
Processor connected to output A1.

Fig. 9. SINEAX Type 811-1.. 2,
Intrinsically safe input circuit,
supply voltage $U_{s} 16.4 \mathrm{~V} D C$,
designed for FSK.
Processor connected to output A1.

Standard accessories

1 Operating Instructions in three languages: German, French, English
2 Withdrawing handle (for opening the housing)
2 Labels (under transparent cover)
1 Type examination certificate (only for "Intrinsically safe" explosion-proof devices)

Dimensional drawings

Fig. 10. SINEAX B 811 in housing S17 clipped onto a top-hat rail ($35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$, acc. to EN 50022).

Fig. 11. SINEAX B 811 in housing S17 screw hole mounting brackets pulled out.

SINEAX B 811

Power pack with additional functions

[^0]: ${ }^{1}$ FSK = Frequency Shift Keying

[^1]: ${ }^{1}$ For power supplies $>125 \mathrm{~V}$, the auxiliary circuit should include an external fuse with a rating ≤ 20 A DC.

[^2]: * 2nd output signal A12 for field indicator only

[^3]: ${ }^{1} \mathrm{HHT}=$ Hand held terminal

